

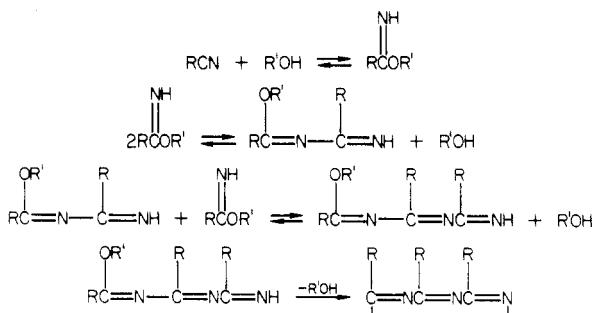
(OEEOEO)₂E-D-C₆H₅CH(CO₂CH₃)NH₃ClO₄ complex was prepared. Into separate ¹H NMR tubes were placed 10-mg samples of each of the above complexes to which were added 500 μ L of 0.45 mol fraction solution of CD₃CN in CDCl₃. The ¹H NMR spectra were taken on these four solutions at ambient temperature on a Bruker WP 200 spectrometer.

Registry No. (S)-2 (A = CH₂OH), 55516-00-2; (S)-2 (A = CH₂Cl), 55516-09-1; (S)-2 (A = CHO), 75684-68-3; (R)-3-L-(CH₃)₂CHCH(CO₂CH₃)NH₃ClO₄, 75684-70-7; (R)-3-L-PhCH(CO₂CH₃)NH₃ClO₄, 75684-71-8; 3-NH₄⁺-picrate, 75640-37-8; 3-CH₃NH₃⁺-picrate, 75640-38-9; 3-t-BuNH₃⁺-picrate, 75640-39-0; (R)-4, 75684-72-9; (R)-4-D-(CH₃)₂CHCH(CO₂CH₃)NH₃ClO₄, 75684-73-0; 4-NH₄⁺-picrate, 75640-40-3; 4-CH₃NH₃⁺-picrate, 75640-41-4; 4-t-BuNH₃⁺-picrate, 75640-42-5; (S)-5, 75640-43-6; (S)-5-L-(CH₃)₂CHCH(CO₂CH₃)NH₃ClO₄, 75640-45-8; (S)-6, 75640-46-9; (S)-6-L-(CH₃)₂CHCH(CO₂CH₃)NH₃ClO₄, 75640-47-0; (S)-6-L-PhCH(CO₂CH₃)NH₃ClO₄, 75640-48-1; (S)-7, 75640-49-2; (S)-7-L-(CH₃)₂CHCH(CO₂CH₃)NH₃ClO₄, 75640-50-5; (S)-8, 75640-51-6; (S)-8-L-(CH₃)₂CHCH(CO₂CH₃)NH₃ClO₄, 75640-52-7; (S)-9, 75640-53-8; (S)-9-L-(CH₃)₂CHCH(CO₂CH₃)NH₃ClO₄, 75640-54-9; (S)-10, 75640-55-0; (S)-10-L-(CH₃)₂CHCH(CO₂CH₃)NH₃ClO₄, 75640-56-1; (R,S)-11, 75640-57-2; (R)-11, 75684-74-1; (S)-11, 75684-75-2; (R)-11-D-C₆H₅CH(CO₂H)NH₃ClO₄, 75684-76-3; (R)-11-D-(CH₃)₂CHCH(CO₂CH₃)NH₃ClO₄, 75684-77-4; (R)-11-D-C₆H₅CH(CO₂CH₃)NH₃ClO₄, 75684-78-5; (R)-11-D-(CH₃)₂CHCH(CO₂H)NH₃ClO₄, 75684-80-9; (R)-11-D-C₆H₅NCH₂CH(CO₂H)NH₃ClO₄, 75684-82-1; (R)-11-D-C₆H₅NCH₂CH(CO₂H)NH₃ClO₄, 75684-84-3; (R)-11-D-C₆H₅CH₂CH(CO₂H)NH₃ClO₄, 75684-86-5; (R)-11-D-CH₃SCH₂CH₂CH(CO₂CH₃)NH₃ClO₄, 75684-88-7; (R)-11-D-CH₃SCH₂CH₂CH(CO₂H)NH₃ClO₄, 75684-90-1; (R)-11-D-CH₃CH(CO₂CH₃)NH₃ClO₄, 75714-58-8; (R)-11-D-CH₃CH(CO₂H)NH₃ClO₄, 75684-91-2; 11-NH₄⁺-picrate, 75640-59-4; 11-CH₃NH₃⁺-picrate, 75640-60-7; 11-t-BuNH₃⁺-picrate, 75640-61-8; (S)-12, 75640-62-9; (S)-12-L-C₆H₅CH(CO₂CH₃)NH₃ClO₄, 75640-63-0; 12-NH₄⁺-picrate, 75640-65-2; 12-CH₃NH₃⁺-picrate, 75640-66-3; 12-t-BuNH₃⁺-picrate, 75640-67-4; (S)-13, 75684-92-3; (S)-14, 75640-68-5; (R,S)-15, 75640-

69-6; (R)-15, 75714-59-9; (S)-15, 75714-60-2; (R,S)-17, 75640-70-9; (R)-17, 75684-93-4; (S)-L-19 (R¹ = CH₃), 75684-94-5; (S)-L-19 (R¹ = H), 75684-95-6; (S)-D-19 (R¹ = CH₃), 75684-96-7; (S)-D-19 (R¹ = H), 75684-97-8; L-C₆H₅CH(CO₂H)NH₃ClO₄, 74292-06-1; D-C₆H₅CH(CO₂H)NH₃ClO₄, 74345-75-8; (S)-[C₆(CH₃)₅]₂D(OH)₂, 75640-71-0; Nap(OEEOEO)₂E-NH₄⁺-picrate, 64916-33-2; Nap(OEEOEO)₂E-CH₃NH₃⁺-picrate, 75640-72-1; Nap(OEEOEO)₂E-t-BuNH₃⁺-picrate, 64916-32-1; P(OEEOEO)₂E-NH₄⁺-picrate, 75640-73-2; P(OEEOEO)₂E-CH₃NH₃⁺-picrate, 75640-74-3; P(OEEOEO)₂E-t-BuNH₃⁺-picrate, 75640-75-4; D(OEEOEO)₂D-NH₄⁺-picrate, 75640-76-5; D(OEEOEO)₂D-CH₃NH₃⁺-picrate, 75640-77-6; D(OEEOEO)₂D-t-BuNH₃⁺-picrate, 75640-78-7; (CH₃)₂D(OEEOEO)₂P-NH₄⁺-picrate, 75640-81-2; (CH₃)₂D(OEEOEO)₂P-t-BuNH₃⁺-picrate, 75640-82-3; (CH₃)₂D(OEEOEO)₂D-NH₄⁺-picrate, 75640-83-4; (CH₃)₂D(OEEOEO)₂D-CH₃NH₃⁺-picrate, 75640-84-5; (CH₃)₂D(OEEOEO)₂D-t-BuNH₃⁺-picrate, 75640-85-6; (CH₃)₂D(OEEOEO)₂D(CH₃)₂NH₄⁺-picrate, 75684-99-0; (CH₃)₂D(OEEOEO)₂D(CH₃)₂CH₃NH₃⁺-picrate, 75685-00-6; (CH₃)₂D(OEEOEO)₂D(CH₃)₂t-BuNH₃⁺-picrate, 75685-93-7; D-C₆H₅CH(CO₂CH₃)NH₃Cl, 19883-41-1; L-(CH₃)₂CHCH(CO₂CH₃)NH₃Cl, 6306-52-1; L-(CH₃)₂CHCH(CO₂H)NH₃ClO₄, 74292-12-9; L-C₆H₅NC₂H₂CH(CO₂CH₃)NH₃Cl, 7524-52-9; L-C₆H₅NCH₂CH(CO₂H)NH₃ClO₄, 74292-14-1; L-C₆H₅CH₂CH(CO₂CH₃)NH₃Cl, 7524-50-7; L-C₆H₅CH₂CH(CO₂H)NH₃ClO₄, 74292-10-7; L-CH₃SCH₂CH₂CH(CO₂H)NH₃ClO₄, 74292-16-3; D-CH₃CH(CO₂CH₃)NH₃Cl, 14316-06-4; D-CH₃CH(CO₂H)NH₃ClO₄, 75640-86-7; (R)-3,3'-dimethyl-2,2'-dihydroxy-1,1'-dinaphthyl, 55515-98-5; pentaethylene glycol ditosylate, 41024-91-3; iodomethane, 74-88-4; phenol, 108-95-2; p-methoxyphenol, 150-76-5; thiophenol, 108-98-5; benzyl mercaptan, 100-53-8; benzoyl chloride, 98-88-4; (R)-2,2'-dimethoxy-1,1'-dinaphthyl, 35294-28-1; (S)-2,2'-dimethoxy-1,1'-dinaphthyl, 75640-87-8; (R)-2,2'-dihydroxy-1,1'-dinaphthyl, 18531-94-7; (S)-2,2'-dihydroxy-1,1'-dinaphthyl, 18531-99-2; (R,S)-2,2'-dimethoxy-1,1'-dinaphthyl, 75685-01-7; phenyl bromide, 108-86-1; pentamethylbromobenzene, 5153-40-2; DL-valine methyl ester perchlorate, 75640-88-9; DL-tryptophane methyl ester perchlorate, 75640-89-0; DL-methionine methyl ester perchlorate, 75640-90-3.

Pressure-Induced Cyclotrimerization of Electron-Deficient Nitriles. Catalysis by Acidic Alcohols and Phenols

William M. Koppes* and Horst G. Adolph


Energetic Materials Division, Naval Surface Weapons Center, White Oak, Silver Spring, Maryland 20910

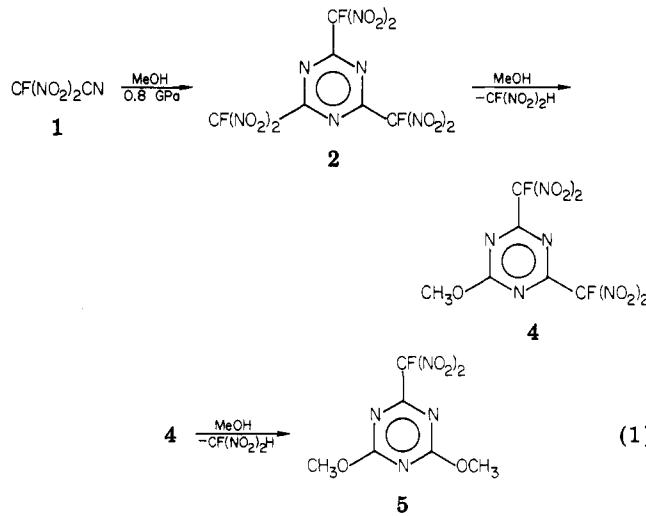
Received July 29, 1980

Fluorodinitroacetonitrile (1) was pressurized at 1 GPa in the presence of a variety of ROH catalysts. Cyclotrimerization of 1 occurred in several cases, but the observed triazines contained RO groups in place of one or several CF(NO₂)₂ groups. Some mechanistic aspects of this reaction are explored by comparison with the results of the pressurization of preformed fluorodinitroacetimidates.

Nitriles differ considerably in their ability to undergo cyclotrimerization to 1,3,5-triazines under the influence of acidic or basic catalysts. Facile trimerization has been reported for some nitriles¹ (e.g., CCl₃CN and 2-cyano-naphthalene but not 1-cyanonaphthalene with HCl/PCl₅,² F-alkyl nitriles with NH₃³), but in general the scope of this reaction has been limited. The use of high pressure, as first reported by Cairns,^{1a} allowed a larger variety of nitriles to be cyclotrimerized. This pressure effect is probably a consequence of the negative volume of activation of addition reactions in general and of cycloadditions in particular.⁴ Subsequently, Kurabayashi^{5a} et al., Korte,^{1b} and

Scheme I

Zhulin^{5b} provided additional examples and showed that a probable mechanism is formation of imidate ester (or amidine) and its self-condensation to triazine (Scheme I).


Triazines derived from nitro- and polynitroacetonitriles have been sought as high-energy compounds for some time, but several representative nitriles, difluoronitro- and fluorodinitroacetonitrile (1), have resisted attempts at

(1) For leading references see: (a) Cairns, T. L.; Larchar, A. W.; McKusick, B. C. *J. Am. Chem. Soc.* 1952, 74, 5633; (b) Jarre, W.; Bienik, D.; Korte, F. *Tetrahedron* 1975, 31, 619.
 (2) Yanagida, S.; et al. *Bull. Chem. Soc. Jpn.* 1973, 46, 306.
 (3) Brown, H. C.; Reilly, W. L. *J. Org. Chem.* 1957, 22, 698.
 (4) Asano, T.; le Noble, W. J. *Chem. Rev.* 1978, 78, 407.
 (5) (a) Kurabayashi, M.; Yanagiya, K.; Yasumoto M. *Bull. Chem. Soc. Jpn.* 1971, 44, 3413. (b) Zhulin, V. M.; Volchek, S. I. *Izv. Akad. Nauk SSSR, Ser. Khim.* 1977, 1295.

cyclotrimerization by conventional means, although inductively electron-withdrawing substituents normally facilitate this process. Thus, Bissell⁶ found that the ammonia-catalyzed trimerization of *F*-alkyl nitriles, in which amidines are formed as intermediates, could not be extended to difluorodinitroacetonitrile because difluorodinitroacetamidine on being heated eliminates difluorodinitromethane rather than ammonia. In fluorodinitroacetone, the C-C bond should be cleaved by bases even easier, although the amidine can be prepared at low temperature.⁷ Several attempts at acid-catalyzed trimerization of 1 were also not successful. Thus, with the catalyst PCl_5/HCl , 1 forms a homogeneous solution from which it can be recovered largely unchanged after being heated for several weeks at 60 °C without indication of any triazine formation. With chlorine fluorsulfate, ClOSO_2F , a 1:1 adduct is formed.⁸ Since 1 begins to decompose near its boiling point (74 °C), the use of forcing conditions of temperature is precluded. In our efforts to effect the trimerization of 1 to tris(fluorodinitromethyl)triazine, $[\text{CF}(\text{NO}_2)_2]_3(\text{CN})_3$ (2), we have investigated and report here on the application of the pressure method to this reaction.

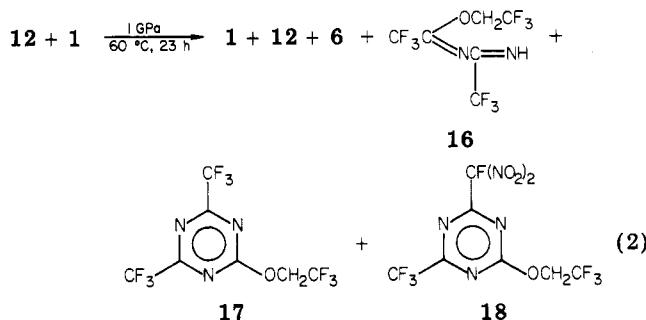
Results

The use of the usual catalyst methanol for the high-pressure trimerization of 1 was first explored since the preparation of methyl fluorodinitroacetimidate (3) in 50% yield from 1 and methanol had been reported.⁷ In our experience, this reaction is strongly affected by the presence of water in the methanol which catalyzes an unidentified exothermic process leading to the evolution of some CO_2 and the destruction of 1; care is therefore required to ensure anhydrous conditions in reactions involving 1 and methanol. When a 3:1 mixture of 1 and methanol in dichloromethane was pressurized for 44 h at 0.8 GPa and 60 °C, the resulting solution contained 3 and two new compounds in the ratio 70:30 (by GC peak areas) which were assigned structures 4 and 5 (eq 1), respectively,

on the basis of gas chromatographic/mass spectral analysis. Mass spectra with base peaks at $M + 1$ were obtained for 4 and 5 after GC separation. No evidence could be found for the presence of 2 in the reaction mixture. The crude yields of triazines 4 and 5 were ca. 45% and 19%, respectively.

On the basis of the accepted mechanism (Scheme I), the unexpected appearance of methoxy groups in the product

Table I. Fluorodinitroacetimidates, $\text{CF}(\text{NO}_2)_2\text{C}(\text{NH})\text{OR}$, from 1 and ROH


R	no.	yield, %	bp, °C (kPa)	mp, °C
CF_3CH_2	6	66	51–52 (7)	
$\text{CF}(\text{NO}_2)_2\text{CH}_2$	7	34	68–69 (0.005)	27–28
C_6H_5	8	90 (crude)	70 (0.3)	38.5–41
C_6F_5	9	22	47–48 (0.01)	
$m\text{-CF}_3\text{C}_6\text{H}_4$	10	88	80 (0.009)	50–51.5
$m\text{-NO}_2\text{C}_6\text{H}_4$	11	93 (crude)		59.5–61

could result from competition for elimination by fluorodinitromethane and methanol in the dimerization and trimerization steps of the initially formed 3. This seems unlikely, however, since a similar competition would be expected in the final cyclization step and would result in the formation of trimethoxytriazine, which was also not found among the products. A more probable explanation is that 2 was formed initially but that the methanol present in the system caused successive displacement of fluorodinitromethyl groups from the triazine ring.⁹ Since the susceptibility to such nucleophilic displacement should decrease in the order 2 > 4 > 5, the observed product distribution is readily accounted for.

Without studying this reaction in greater detail, it was decided to investigate more acidic alcohols as trimerization catalysts on the supposition that they would be less effective in displacing fluorodinitromethide in 2 and thus might permit its isolation. In an effort to minimize the amount of free alcohol in the system, we also investigated the use of preformed imidate in place of the mixture of 1 and alcohol. These esters (Table I) were prepared by the base-catalyzed addition of the appropriate alcohol to 1. The use of potassium carbonate generally gave better results than triethylamine.

When dichloromethane solutions of preformed imidate were pressurized at ca. 1 GPa and 60 °C, the results shown in Table II were obtained. Pressurization of trifluoroethyl trifluoroacetimidate (12) was included for comparison purposes. Noteworthy features of this set of reactions are (a) the absence of 2 among all of the reaction products, (b) the drastic differences in reactivity between the various imidates, and (c) the effect of added 1 on the pressurization of 6 and of $\text{CF}_3\text{CH}_2\text{OH}$ on that of 12. As will be seen, these observations are not readily explained by the mechanistic picture of Scheme I.

When 12 was pressurized in the presence of 1, a more complex set of products was obtained (eq 2).

(9) Fluorodinitromethide is not as good a leaving group as are other dinitromethides (see, for example: Adolph, H. G.; Kamlet, M. J. *J. Org. Chem.* 1969, 34, 45), but its displacement from sp^3 and sp^2 carbon and from nitrogen has been observed previously: Kamlet, M. J.; Adolph, H. G. *J. Org. Chem.* 1968, 33, 3073; also the paper cited above.

(10) Yields are determined by chromatography (high-pressure LC or GC) by use of internal standards and in a few instances by isolation of the products (cf. Experimental Section). Yields are based on the amount of starting material and are not corrected for recovered material.

(11) Determined by D. J. Glover of the Naval Surface Weapons Center.

(6) Bissell, E. R. *J. Org. Chem.* 1963, 28, 1717.

(7) Fokin, A. V.; et al. *Izv. Akad. Nauk SSSR, Ser. Khim.* 1974, 456.

(8) Fokin, A. V.; et al. *Izv. Akad. Nauk SSSR, Ser. Khim.* 1976, 489.

Table II. Pressurization of Trifluoro- and Fluorodinitroacetimidates¹⁰

imidate, $\text{RC}(\text{NH})\text{OR}'$	conditions	imidate recovered	% products		
			$\text{R}_2(\text{CN})_3\text{OR}'$	dialkyltriazine, $\text{R}(\text{CN})_3(\text{OR}')_2$	other
6; $\text{R} = \text{CF}(\text{NO}_2)_2$, $\text{R}' = \text{CH}_2\text{CF}_3$	CH_2Cl_2 , 1 GPa, 65°C , 39 h	95	0	0	no products by TLC, GC, IR
8; $\text{R} = \text{CF}(\text{NO}_2)_2$, $\text{R}' = \text{C}_6\text{H}_5$	CH_2Cl_2 , 1 GPa, 40°C , 20 h	0	0	0	trace $(\text{CN})_3(\text{OR}')_3$; no other identifiable products
10; $\text{R} = \text{CF}(\text{NO}_2)_2$, $\text{R}' = m\text{-CF}_3\text{C}_6\text{H}_4$	CH_2Cl_2 , 1 GPa, 60°C , 68 h	>99	0	0	$(\text{CN})_3(\text{OR}')_3$, 0.5
12; $\text{R} = \text{CF}_3$, $\text{R}' = \text{CH}_2\text{CF}_3$	CH_2Cl_2 , 1 GPa, 60°C , 65 h	69	0	0	$\text{R}_3(\text{CN})_3$, 6; $\text{CF}_3\text{C}(\text{NH}_2)\text{-(OCH}_2\text{CF}_3)_2$, (15), 2-3
12 + $\text{CF}_3\text{CH}_2\text{OH}$; $\text{R} = \text{CF}_3$, $\text{R}' = \text{CH}_2\text{CF}_3$	$\text{CF}_3\text{CH}_2\text{OH}$, 1 GPa, 60°C , not determined	0	0	0	$\text{R}_3(\text{CN})_3$, 16; 15, 2
6 + 1; $\text{R} = \text{CF}(\text{NO}_2)_2$, $\text{R}' = \text{CH}_2\text{CF}_3$	CH_2Cl_2 , 1 GPa, 65°C , 23 h	96	2.7 (13)	0.5 (14)	

Table III. Pressurization of 1 with Alcohols and Phenols in CH_2Cl_2 at ca. 1 GPa¹⁰

ROH (pK_a)	molar ratio of ROH/1	conditions	1	% products			
				$\text{CF}(\text{NO}_2)_2\text{C}(\text{NH})\text{OR}$	$[\text{CF}(\text{NO}_2)_2]_2\text{C}(\text{CN})_3\text{OR}$	$\text{CF}(\text{NO}_2)_2\text{C}(\text{CN})_3(\text{OR})_2$	other
CH_3OH (16)	1:3	60°C , 44 h	^a	^a	45 (4)	19 (5)	$\text{CF}(\text{NO}_2)_2\text{H}$
$\text{CF}_3\text{CH}_2\text{OH}$ (12)	1:3	65°C , 60 h	^a	45	~6 (13)	~17 (14)	unidentified product with higher retention time
$(\text{CF}_3)_2\text{CHOH}$ (9.3)	1:3	60°C , 45 h	no reaction				
$\text{C}_6\text{H}_5\text{OH}$ (10)	1:2	65°C , 40 h	^a	0	68 (19)	0	$(\text{C}_6\text{H}_5\text{O})_3(\text{CN})_3$ (20), 4
$m\text{-O}_2\text{N-C}_6\text{H}_4\text{OH}$ (8.4)	1:3.5	60°C , 48 h	48	^a	0	37 (21)	$(m\text{-O}_2\text{N-C}_6\text{H}_4\text{O})_3(\text{CN})_3$ (22), 2
$m\text{-CF}_3\text{C}_6\text{H}_4\text{OH}$ (9.0) ¹¹	1:3	60°C , 50 h	50	0	0	45 (23)	$(m\text{-CF}_3\text{C}_6\text{H}_4\text{O})_3(\text{CN})_3$ (24), 1
$\text{C}_6\text{F}_5\text{OH}$ (5.5)	1:3	60°C , 50 h	61	94	0	0	
$p\text{-O}_2\text{N-C}_6\text{H}_4\text{OH}$ (7.2)	1:3.2	60°C , 55 h	62.5	100	0	0	

^a Present but yield not determined.

In a second set of experiments, mixtures of 1 and alcohol or phenol were pressurized under similar conditions (Table III). In general, the reactivity pattern observed for the different alcohols and phenols paralleled that of the imidates, i.e., no reaction past the imidate stage with the more acidic phenols ($\text{pK}_a < \text{ca. } 8$), and formation of alkoxy-substituted triazines with alcohols and phenols of $\text{pK}_a \geq 8.4$. The anticipated effect of catalyst acidity was clearly not observed, however, and no 2 was found in any of the reactions investigated.

In blank experiments, 1 and $\text{CF}_3\text{CH}_2\text{OH}$ were heated at ambient pressure for 75 h at 70°C with the result that there was no reaction detected. When a mixture of 6 and 1 was refluxed in CH_2Cl_2 , no reaction occurred.

Discussion

The data in Tables II and III show that fluorodinitroacetimidates derived from acidic alcohols with inductively electron-withdrawing substituents are not able to participate in the addition-elimination sequence of Scheme I when pressurized alone. Presumably this is due to the lower basicity of the imine nitrogen in these compounds. That 8 is found to be much more reactive than 6, which derives from a less acidic ROH species, is compatible with this interpretation since the σ^* value for CF_3CH_2 is greater than that for C_6H_5 (0.92 vs. 0.60). The sensitivity of imidate di- and trimerization to relatively small inductive effects is further indicated by the drastic difference in reactivity between 8 and 10 (Table II).

The effect of added 1 on the pressurization of 6 (Table II) is best explained by the assumption of an alternative reaction pathway which initially involves addition of imidate to the more electrophilic nitrile 1, followed by an addition-elimination sequence which eventually leads to

the observed triazines (Scheme II).

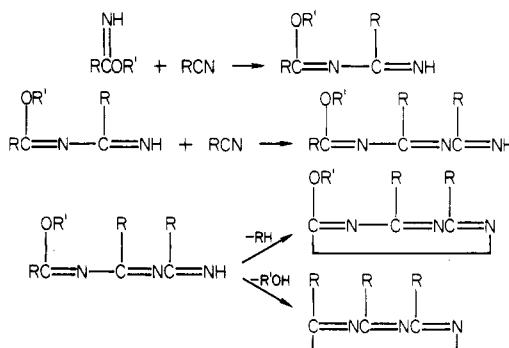
Whether this alternative mechanism is also operative when mixtures of 1 and acidic alcohols or phenols are pressurized (Table III) is not clear because of the additional complication that the presence of ROH in the reaction mixture has an accelerating effect on at least some of the reactions (compare 6 + 1 in Table II with 1 + $\text{CF}_3\text{CH}_2\text{OH}$ in Table III) and the pressurizations of 12 with and without added $\text{CF}_3\text{CH}_2\text{OH}$ in Table II). This accelerating effect may be operating on either of the two mechanisms. It might involve activation of the imidate via a hydrogen-bonded complex, in analogy to the effect of acetic acid observed by Schaefer and Peters,¹² in the case of mechanism 1 (Scheme I), and a similar activation of 1 or of an intermediate adduct in the case of mechanism 2 (Scheme II). In most cases our data do not permit a clear distinction between these possibilities, since all of the products observed in the pressurizations with ROH present can be formed both ways. For example, one of the more complex products, 18, could result not only from the process 12 + 1 + 1 (mechanism 2) but also from the sequence 12 + 6 + 6 (or 1) (mechanism 1). In the reactions involving phenol as the ROH component, more tris(aryloxy)triazine is formed than in the other cases. Here, in the pressurization of 8, mechanism 1 is operating; however, in the reaction of 1 with phenol 20 is probably also formed by this route, for if both 19 and 20 arose via mechanism 2, then an intermediate yield of the (fluorodinitromethyl)diphenoxyltriazine would certainly be expected, but none was found. The same argument precludes formation of both 19 and 20 by mechanism 1, and thus it is likely

(12) Schaefer, F. C.; Peters, G. A. *J. Org. Chem.* 1961, 26, 2778.

that, at least in this case, both mechanisms are operating simultaneously.

Another question pertinent to the purpose of this work concerns the mechanism of alkoxy and aryloxy introduction into the triazine ring. The mono-RO-substituted triazines are best accounted for by mechanism 2 with either $\text{CF}(\text{NO}_2)_2\text{H}$ elimination in the final step or ROH elimination followed by $\text{CF}(\text{NO}_2)_2$ displacement. If exclusive $\text{CF}(\text{NO}_2)_2\text{H}$ elimination occurred in the pressurization of 6 + 1, however, then there would be no ROH which is needed for the formation of 14. The presence of dialkoxymethane in the product of this reaction thus gives indirect evidence for the initial formation of 2 to at least some extent. Substantial $\text{CF}(\text{NO}_2)_2\text{H}$ elimination is also unlikely if mechanism 1 applies, since it should occur to comparable extents in all three steps and lead to more trialkoxy- or tris(aryloxy)triazine than was found. The observed substantial variation in the mono-RO/di-RO-substituted ratios can be qualitatively understood in terms of a combination of factors which include the following: the pK_a and nucleophilicity of ROH which determine its ability to displace $\text{CF}(\text{NO}_2)_2$ from the triazine ring, as well as the amount of more reactive RO^- present in the reaction mixture (this might account for the surprising results with the phenols, Table III); the inductive effect of the RO group which determines the susceptibility of the mono-RO-substituted triazine to nucleophilic attack; the ROH concentration (6 + 1 vs. 1 + $\text{CF}_3\text{CH}_2\text{OH}$).

The synthesis of 2 by the reaction studied here is prevented by either $\text{CF}(\text{NO}_2)_2\text{H}$ elimination in the ring-closure step or by the extreme lability of at least one $\text{CF}(\text{NO}_2)_2$ group in 2. The isolation of $(\text{RO})_3(\text{CN})_3$ in some cases shows that $\text{CF}(\text{NO}_2)_2$ elimination is possible, but indirect evidence was also obtained for the initial formation of 2. That even the last $\text{CF}(\text{NO}_2)_2$ group in 14 is susceptible to nucleophilic attack was shown by its conversion to $(\text{CF}_3\text{CH}_2\text{O})_3(\text{CN})_3$ on reaction with KOH/ $\text{CF}_3\text{CH}_2\text{OH}$ at room temperature.


Experimental Section¹³

Caution. Many materials described here are explosives, and appropriate care should be taken in their handling. A number

(13) High-pressure experiments were done with a standard 200 000-psi pressure-generating panel from Harwood Engineering Co., Inc. The apparatus delivered a high-pressure fluid composed of 50/50 ethylene glycol/water to a Harwood bomb with a 6 × 1 in. bore for containment of sample vessels. The bomb was heated with an external wrap of heating tape, and the fluid pressure inside was measured with a bulk modulus cell connected by a "T" to the inlet pipe. Sample tubes of Teflon (3.5-mL capacity) and copper (nickel-plated copper bellows tubing, 32 mL) were sealed with threaded caps, after the tubes were filled to capacity with solution, and subjected to hydrostatic pressure in the bomb. Corrugated Teflon tubes (PennTube Plastics Co.), plugged at the ends with Teflon rods held in place with Taper-Tite Kel-F nuts (Chemplast, Inc.), were also used. GC analysis was done on a 120 × 0.3 cm column of 5% UC W-982 silicone rubber/Chrom P at 65 mL/min of He flow with a TC detector. TLC analyses were done on precoated plastic plates (0.25-mm layer of silica gel) with fluorescent binder and precoated glass plates (0.25 mm of silica gel) with toluene as solvent. Triazine products containing no phenyl groups were best analyzed on the glass plates with the use of the following sequential sprays for visualization (specific for nitro groups): (1) 50% KOH in MeOH, followed by oven drying and (2) dilute solution of Ph_2NH in 50% H_2SO_4 . High-pressure LC analyses were performed on a 300 × 4 mm column loaded with C_{18} -coated silica gel (10 μm) with a 1.5 mL/min flow of 30/70 $\text{H}_2\text{O}/\text{CH}_3\text{CN}$ and a UV detector (254 nm). NMR chemical shift data are reported in positive parts per million units (δ) downfield from Me_4Si (internal standard) and in positive parts per million units (δ^*) upfield from CFCl_3 (internal standard). Spectra were obtained in this laboratory and at Biomeasure, Inc. Mass spectral analyses were performed at the Cornell University Mass Spectrometry Facility with CH_4 chemical ionization. Samples frequently gave $\text{M} + 29$ and $\text{M} + 41$ peaks in addition to the usual $\text{M} + 1$ ion because of addition of C_2H_5 and C_3H_5 to the molecule. CH_2Cl_2 and $\text{CF}_3\text{CH}_2\text{OH}$ were distilled from P_2O_5 , and MeOH was distilled from $\text{Mg}(\text{OCH}_3)_2$. $\text{CF}(\text{NO}_2)_2\text{CN}$ was obtained by the literature method:¹⁴ bp 52–53 °C (27 kPa); d^{20} 1.49.

(14) Wiesboeck, R. A.; Russ, J. K. *J. Org. Chem.* 1968, 33, 1257.

Scheme II

of fluorodinitromethyl compounds also show varying degrees of toxicity. Fluorodinitromethane and particularly fluorodinitroethanol may cause painful burns on the skin.

Fluorodinitroethyl Fluorodinitroacetamide (7). The general procedure as described for the addition of $\text{CF}_2\text{NO}_2\text{CH}_2\text{OH}$ to 1 was followed.⁷ A solution of $\text{CF}(\text{NO}_2)_2\text{CH}_2\text{OH}$ (5.60 g, 36.4 mmol) and Et_3N (20 mg, 0.2 mmol) in 25 mL of Et_2O was treated dropwise with a solution of 1 (3.58 g, 24.0 mmol) in 5 mL of Et_2O . The yellow solution was stirred for 2 h, washed with water (2 × 50 mL) and saturated NaCl solution (50 mL), dried (MgSO_4), and concentrated in vacuo to give 6.94 g of yellow oil. Short-path distillation at 0.33 kPa gave 2.44 g of recovered alcohol. Continuation of the distillation at a lower pressure gave 2.44 g (34%) of 7, bp 68–69 °C (0.0050 kPa). Traces of $\text{CF}(\text{NO}_2)_2\text{C}(\text{O})\text{NH}_2$ which codistilled with the product were removed by extraction of the amide from a CCl_4 solution of the imidate ester with water. Pure 7 had the following properties: mp 27–28 °C; d^{20} 1.670; IR (film) 1700 (C=N), 3350 (NH) cm^{-1} ; ^1H NMR (CCl_4) δ 9.42 (s, 1, NH), 5.46 (d, 2, J = 17 Hz, CH_2); ^{19}F NMR ϕ^* 102 ($\text{CF}(\text{NO}_2)_2\text{C}=\text{NH}$), 110 ($\text{CF}(\text{NO}_2)_2\text{CH}_2$). Anal. Calcd for $\text{C}_4\text{H}_4\text{F}_2\text{N}_3\text{O}_5$: C, 15.85; H, 1.00; F, 12.54; N, 23.11. Found: C, 16.11; H, 0.95; F, 12.50; N, 22.85.

2,2,2-Trifluoroethyl Fluorodinitroacetimidate (6). A solution of 5.2 g (35 mmol) of 1, 40.0 g (40 mmol) of $\text{CF}_3\text{CH}_2\text{OH}$, and 20 μL of Et_3N in 6 mL of CH_2Cl_2 was stirred at 20 °C for 1 h, washed with four equal volumes of water, dried (MgSO_4), and heated to 60 °C to distill off the solvent. Continued distillation at 27 kPa provided 1.9 g of recovered 1. The pressure was reduced to 0.9 kPa, whereupon 5.80 g (66%) of 6 was collected: bp 51–52 °C (0.9 kPa); IR (film) 3350 (NH), 1698 (C=N) cm^{-1} ; ^1H NMR (CCl_4) δ 9.16 (s, 1, NH), 4.74 (q, 2, J = 8 Hz, CH_2); ^{19}F NMR ϕ^* 74.0 (CF_3), 100.6 ($\text{CF}(\text{NO}_2)_2$); mass spectrum, m/z (relative intensity) 278 ($\text{M} + 29$, 1), 250 ($\text{M} + 1$, 8), 204 (22), 101 (100), 81 (78). Anal. Calcd for $\text{C}_4\text{H}_4\text{F}_4\text{N}_3\text{O}_5$: C, 19.29; H, 1.21; F, 30.51; N, 16.87. Found: C, 19.27; H, 1.22; F, 30.62; N, 17.14.

2,2,2-Trifluoroethyl Trifluoroacetimidate (12). Preparation according to a literature method¹⁵ gave material with the following: bp 58 °C (lit. bp 58–59 °C); IR (gas) 3380 (NH), 1700 (C=N) cm^{-1} ; ^{19}F NMR (CD_2Cl_2) ϕ^* 74.2 (t, J = 8 Hz, CH_2CF_3), 74.6 ($\text{CF}_3\text{C}=\text{NH}$).

Phenyl Fluorodinitroacetimidate (8). A stirred mixture of 4.90 g (52.1 mmol) of PhOH, 1.0 g of K_2CO_3 , and 30 mL of CH_2Cl_2 was treated dropwise (30 min) with 7.52 g (51.1 mmol) of 1. The orange solution was filtered and concentrated in vacuo (aspirator) to give 11.6 g of residue. Removal of unreacted PhOH by distillation at 0.3 kPa (bp 52–56 °C) left 11.14 g (90%) of 8 which was pure by TLC and identical with subsequently distilled material by IR. Distilled material was light yellow¹⁶ and was a mixture of syn and anti isomers: bp 70 °C (0.032 kPa); mp 38.5–41.0 °C; IR (film) 3300 (NH), 1692 (C=N) cm^{-1} ; ^1H NMR (CCl_4) δ 8.31 (s, NH), 7.24 (m, C_6H_5); ^{19}F NMR (CCl_4) ϕ^* 102.4 (s, $\text{CF}(\text{NO}_2)_2$), 100.6 (s, $\text{CF}(\text{NO}_2)_2$, small amount); mass spectrum, m/z (relative intensity) 284 ($\text{M} + 41$, 2), 272 ($\text{M} + 29$, 1), 244 ($\text{M} + 1$), 244 ($\text{M} + 1$, 62), 198 (55), 168 (88), 152 (100), 151 (51), 122 (100).

(15) Brown, H. C.; Wetzel, C. R. *J. Org. Chem.* 1965, 30, 3724.

(16) This material turned brown and partially liquified on storage for 1 week at room temperature in a stoppered flask. Within 2 months extensive decomposition had occurred (gas evolution).

(93), 98 (98). Anal. Calcd for $C_8H_6FN_3O_5$: C, 39.51; H, 2.49; F, 7.81; N, 17.28. Found: C, 39.48; H, 2.39; F, 7.63; N, 17.29.

The following imide esters were prepared in the same manner.

F-Phenyl Dinitroacetimidate (9). A mixture of syn and anti isomers was obtained as a pale yellow liquid in 22% yield by distillation: bp 47–48 °C (0.010 kPa); IR (film) 3340 (NH), 1700 (C=N) cm^{-1} ; ^{19}F NMR (CCl_4) ϕ^* 98.4 (s, $\text{CF}(\text{NO}_2)_2$), 99.6 (s, $\text{CF}(\text{NO}_2)_2$, in a lesser amount a 20/80 isomer composition was indicated), 150–162 (m, C_6F_5); mass spectrum, m/z (relative intensity) 334 (M + 1, 4), 288 (1), 185 (100), 168 (2), 150 (27), 132 (30), 105 (12). Anal. Calcd for $C_8HF_6N_3O_5$: C, 28.84; H, 0.30; F, 34.22; N, 12.61. Found: C, 28.81; H, 0.31; F, 33.92; N, 12.52.

m-(Trifluoromethyl)phenyl Fluorodinitroacetimidate (10). Crude product (mp 45–49 °C) obtained in 98% yield by filtration and removal of solvent was purified by distillation to give 10 in 88% yield as a light yellow solid with the following properties: bp 80 °C (0.0093 kPa); mp 50–51.5 °C; IR (KBr) 1700 (C=N), 3300 (NH) cm^{-1} ; ^{19}F NMR (CCl_4) ϕ^* 63.7 (s, CF_3), 100.8, 102.4 (s, $\text{CF}(\text{NO}_2)_2$, isomer ratio of 32/68). Anal. Calcd for $C_9H_5F_4N_3O_5$: C, 34.74; H, 1.62; F, 24.42; N, 13.50. Found: C, 34.71; H, 1.58; F, 24.69; N, 13.49.

m-Nitrophenyl Fluorodinitroacetimidate (11). The crude product (mp 50–55 °C) obtained after filtration of the reaction solution and evaporation of solvent represented a 93% yield and was identical by IR analysis with subsequently recrystallized (CCl_4) material. The light yellow solid had the following: mp 59.5–61.0 °C; IR (KBr) 1701 (C=N), 3310 (NH) cm^{-1} ; ^{19}F NMR (CD_2Cl_2) ϕ^* 99.0, 101.2 (s, $\text{CF}(\text{NO}_2)_2$, isomer ratio of 40/60). Anal. Calcd for $C_8H_5FN_3O_7$: C, 33.34; H, 1.75; F, 6.59; N, 19.44. Found: C, 33.53; H, 1.79; F, 6.56; N, 19.19.

Pressurization of 6 at 1.0 GPa. A solution of 0.75 g (3.0 mmol) of 6 in 3 mL of CH_2Cl_2 was held at 1.0 GPa and 65 °C for 39 h. Removal of the solvent on a rotary evaporator gave 0.71 g (95%) of recovered 6 which was pure by GC, IR, and TLC analyses.

Pressurization of 12 at 1.0 GPa. (A) In CH_2Cl_2 . A solution of 0.19 g (0.97 mmol) 12 in 2.6 mL of CH_2Cl_2 was held at 1.0 GPa and 60 °C for 65 h. GC analysis with CCl_4 as an internal standard showed a 69% recovery of 12. The triazine ($\text{CF}_3)_3(\text{CN})_3$, obscured by the solvent peak in GC analysis, was detected at ϕ^* 71.9 in the ^{19}F spectrum. Analysis with PhCF_3 as an internal standard gave 0.019 mmol (6%) of triazine. An additional product, $\text{CF}_3\text{C}(\text{NH}_2)(\text{OCH}_2\text{CF}_3)_2$ (15), which eluted immediately after the CCl_4 peak in the gas chromatogram was not isolated. Its structure is supported by gas chromatographic/mass spectral and ^{19}F NMR data. The NMR analysis showed a yield of 0.031 mmol (3%): ^{19}F NMR (CH_2Cl_2) ϕ^* 77.5 (t, J = 8 Hz, CF_3CH_2), 83.2 (s, $\text{CF}_3\text{C}(\text{NH}_2)_2$); mass spectrum, m/z (relative intensity) 296 (M + 1, 2), 279 (4), 276 (5), 256 (9), 196 (92), 101 (100), 81 (65).

(B) In $\text{CF}_3\text{CH}_2\text{OH}$. After treatment at 1.0 GPa and 60 °C for 65 h, a solution of 0.18 g (0.92 mmol) of 12 in 2.6 mL of $\text{CF}_3\text{CH}_2\text{OH}$ was taken up in 3 mL of CH_2Cl_2 , washed with water (4 × 10 mL), and dried (MgSO_4). ^{19}F NMR analysis with PhCF_3 as the standard showed 0.05 mmol (16%) of $(\text{CF}_3)_3(\text{CN})_3$. Prior to the aqueous workup, GC analysis with CCl_4 as the standard indicated 0.015 mmol (2%) of 15, assuming its relative response to CCl_4 to be the same as that for 12.¹⁷

Pressurization of 8 at 1.0 GPa. A solution of 1.22 g (5.02 mmol) of 8 in 10 mL of CH_2Cl_2 was held at 1.0 GPa and 40 °C for 20 h. Considerable gas pressure was vented as the Teflon reaction vessel was carefully opened. The dark reaction mixture contained 0.34 g of insoluble black solid. TLC and GC analyses of the solution showed the absence of any 8 or 19. Small amounts of $\text{CF}(\text{NO}_2)_2\text{H}$ and 20 were detected. The black solid and tacky brown solid (1.05 g) left after evaporation of solvent were composed of polar material which remained at the origin on TLC analysis and showed strong absorptions at 3200–3400 cm^{-1} in the IR. Extensive decomposition had apparently occurred, accompanied by the generation of nitrogen oxides.

Pressurization of 10 at 1.0 GPa. A solution of 0.36 g (1.2 mmol) of 10 in 3 mL of CH_2Cl_2 was held at 1.0 GPa and 60 °C for 68 h. No gas pressure was noted when the reaction vessel was opened. Analysis by ^{19}F NMR with PhF added as a standard

(17) In part A this assumption gave 1.4% 15 as compared to 3.2% by ^{19}F NMR.

showed complete recovery of 10. A trace of $\text{CF}(\text{NO}_2)_2\text{H}$ was detected at ϕ^* 120, however, and high-pressure LC analysis showed 1.1 mg (0.5%) of 24 (quantitated by addition of an authentic sample prepared from the phenol and cyanuric chloride, *vide infra*).

1 and CH_3OH at 0.8 GPa. A solution of 1.34 g (9.0 mmol) of 1, 0.0945 g (3.0 mmol) of CH_3OH and 3 mL of CH_2Cl_2 was held at 0.8 GPa and 60 °C for 44 h. Gas pressure was carefully vented as the reaction vessel was opened. The yellow solution continued to effervesce on being allowed to stand. GC analysis showed, in addition to a group of low-retention peaks which included $\text{CF}(\text{NO}_2)_2\text{H}$, the following products in order of elution (uncorrected area, %): 3 (64%), 5 (11%), 4 (25%). Removal of volatiles in vacuo gave 0.90 g of liquid consisting of the above products. The imide ester was removed by stirring of the liquid at 20 °C and 0.007 kPa to give 0.63 g of a 30/70 mixture of triazines, which represents the approximate yields of 5 (19%) and 4 (45%). The triazine structures were confirmed by gas chromatographic/mass spectral analysis. Compound 5 gave the following: mass spectrum, m/z (relative intensity) 304 (M + 41, 4), 292 (M + 29, 2), 264 (M + 1, 100), 245 (2), 218 (65), 188 (6), 173 (16), 61 (7). Compound 4 gave the following: mass spectrum, m/z (relative intensity) 396 (M + 41, 5), 384 (M + 29, 16), 356 (M + 1, 100), 337 (3), 310 (11), 266 (5), 234 (1), 220 (1), 125 (1), 61 (1).

1 and $\text{CF}_3\text{CH}_2\text{OH}$ at 1.0 GPa. A solution of 8.94 g (60 mmol) of 1, 2.00 g (20 mmol) of $\text{CF}_3\text{CH}_2\text{OH}$, and 25 mL of CH_2Cl_2 was held at 1.0 GPa and 65 °C for 60 h. GC analysis of a light yellow residual liquid (6.55 g) left after rotary evaporation of the volatiles showed residual CH_2Cl_2 and 1 together with the following products in order of elution (uncorrected area, %): 6 (74%), 14 (18%), 13 (6%), unknown A (2%). Distillation at 0.93 kPa gave 2.0 g of 6 (bp 52 °C) and a 1.89 g of residue composed of 12% residual 6 and 88% of products 13, 14, and unknown A (ca. 24% crude yield of triazine products). Continued distillation at 0.0016 kPa gave 0.94 g of 14 and a 0.56-g residue. Gas chromatographic/mass spectral analysis of the residue identified the structure of 13 as $(\text{CF}(\text{NO}_2)_2)_2(\text{CN})_3\text{OCH}_2\text{CF}_3$. The structure of unknown A, which by its position in the chromatogram would be the next triazine in the series representing decreasing replacement of fluorodinitromethyl by alkoxy, could not be confirmed as 2 by the mass spectral data: m/z (relative intensity) 447 (M, not found), 357 (M – 3 NO, 3), 317 (M – 2 NO_2F , 25), 271 (317 – NO₂, 94), 241 (271 – NO, 100). Fragments at m/z (relative intensity) 226 (23), 221 (43), and 193 (14) cannot be interpreted as logical fragments of the triazine 2.

The distillation residue was chromatographed on a silica gel column with 50/50 c- C_6H_{12} / CH_2Cl_2 to give an analytical sample of 14, but further elution with 100% CH_2Cl_2 failed to provide any 13 or unknown A.

For 14: bp 80 °C (0.0016 kPa); IR (film) 1605 (br, with a 1550- cm^{-1} shoulder); ^1H NMR (CCl_4) δ 4.83 (q, J = 8 Hz, CH_2); ^{19}F NMR (CD_2Cl_2) ϕ^* 99.0 (s, $\text{CF}(\text{NO}_2)_2$), 73.9 (t, J = 7.4 Hz, CF_3); mass spectrum, m/z (relative intensity) 440 (M + 41, 6), 428 (M + 29, 9), 400 (M + 1, 100), 380 (9), 354 (33). Anal. Calcd for $\text{C}_8\text{H}_4\text{F}_2\text{N}_2\text{O}_6$: C, 24.07; H, 1.01; F, 33.32; N, 17.55. Found: C, 23.79; H, 1.04; F, 33.15; N, 17.80.

Compound 13 had the following mass spectrum: m/z (relative intensity) 424 (M + 1, 2), 348 (20), 302 (12), 272 (100), 252 (28), 125 (66).

1 and PhOH at 1.0 GPa. A solution of 2.03 g (13.6 mmol) of 1, 0.64 g (6.8 mmol) of PhOH , and 1.92 g (1.4 mL) of CH_2Cl_2 was held at 1.0 GPa and 65 °C for 40 h. Gas pressure was carefully vented as the vessel was opened. Removal of volatiles in vacuo gave a viscous red liquid (2.21 g) which contained no PhOH or 19 by IR and GC analyses. The liquid was further subjected to 0.007 kPa and 120 °C to give a red-brown solid of 1.28 g. This material consisted of one major component by TLC and GC. The presence of a small amount of 20 was indicated by TLC. A portion of the solid was distilled in a short-path apparatus at 0.007 kPa and 100–123 °C (bath temperature). The viscous, yellow, liquid distillate was identical with the red-brown solid by IR analysis and was identified by ^{19}F NMR and mass spectroscopy as $\text{PhO}(\text{CN})_3[\text{CF}(\text{NO}_2)_2]_2$ (19). The 1.28 g of solid represents a 68% yield of this triazine with the following properties: IR (film) 1605 (s, with shoulders at 1570 and 1542), 1462 (s), 1385 (s) cm^{-1} ; ^{19}F NMR (CDCl_3) ϕ^* 100 (br s, $\text{CF}(\text{NO}_2)_2$); mass spectrum, m/z (relative

intensity) 458 (M + 41, 2), 446 (M + 29, 5), 418 (M + 1, 43), 388 (19), 372 (11), 215 (79), 171 (11), 140 (100), 125 (28), 95 (65).

Chromatography of the 1.28 g of solid on silica gel with *c*-C₆H₁₂/CH₂Cl₂ as solvent gave 0.06 g (4%) of 20, which was identical by IR with an authentic sample. It was not possible to obtain an analytically pure sample of 19 by chromatography; contact with silica gel produced a new component which contaminated the isolated triazine.

1 and *m*-CF₃C₆H₄OH at 1.0 GPa. A solution of 0.45 g (3.0 mmol) of 1 and 0.16 g (1.0 mmol) of *m*-CF₃C₆H₄OH in 3 mL of CH₂Cl₂ was held at 1.0 GPa and 60 °C for 50 h. There was no darkening of the solution or buildup of gas pressure in the reaction vessel. Bulk to bulk transfer of volatiles at 0.007 kPa and 20 °C gave 0.28 g of liquid residue and a colorless distillate containing 0.22 g of recovered 1 by GC analysis with CCl₄ as internal standard. IR analysis of the residue indicated the absence of any phenol or imidate ester. ¹⁹F NMR analysis with PhF added as a standard showed 0.45 mmol (45%) of 23 and 0.46 mmol of CF(NO₂)₂H.¹⁸ High-pressure LC analysis of the residue for 24 by the method of addition of an authentic sample showed that 0.0082 mmol (0.8%) of 24 was present. The triazine 23 had the following properties: ¹⁹F NMR (CCl₄) δ * 63.7 (s, CF₃), 99.0 (s, CF(NO₂)₂); mass spectrum, *m/z* (relative intensity) 524 (M + 1, 1), 191 (13), 163 (72), 143 (100).

An identical solution was held at 1.0 GPa and 60 °C for only 4 h to check for the extent of reaction during a short time period. In a similar workup, 0.29 g of distillation residue was obtained together with a distillate that contained 0.28 g of 1. The presence of unreacted phenol and imidate ester was evident by IR analysis of the residue. ¹⁹F NMR analysis with added PhF as a standard showed 0.15 mmol (15%) of 23.

1 and (CF₃)₂CHOH at 1.0 GPa. A solution of 0.90 g (6.0 mmol) of 1 and 0.34 g (2.0 mmol) of (CF₃)₂CHOH in 3 mL of CH₂Cl₂ was held at 1.0 GPa and 60 °C for 45 h. GC analysis showed only recovered nitrile and alcohol. Removal of volatiles in vacuo left 0.01 g of liquid which was identified by IR as CF(NO₂)₂C(O)NH₂.

1 and *m*-NO₂C₆H₄OH at 1.0 GPa. A solution of 5.22 g (35.0 mmol) of 1, 1.39 g (10.0 mmol) of *m*-NO₂C₆H₄OH, and 28 mL of CH₂Cl₂ was held at 1.0 GPa and 60 °C for 48 h. Only a slight gas pressure was noted when the vessel was opened. Volatiles were removed at 70 °C and 0.02 kPa to give 2.43 g of yellow, solid residue and a distillate which contained 2.52 g of recovered 1 and 0.70 g of CF(NO₂)₂H by GC analysis with CCl₄ as the standard. IR analysis of the residue showed the presence of 11 and the absence of any phenol. Compound 11 and a small amount of CF(NO₂)₂C(O)NH₂ were removed by subjecting the residue to 110 °C at 0.005 kPa. High-pressure LC analysis of the 2.04-g residue showed one major component and several minor contaminants. This material was identical by IR with subsequently recrystallized 21 and represents a 37% yield of this triazine. One of the minor impurities was isolated by chromatography on silica gel (CH₂Cl₂) and, although still impure, was shown by mass spectral analysis to be 22 (ca. 2% yield). Recrystallization (C₂H₂Cl₂) of 21 gave material: mp 159.5–160.5 °C; IR (KBr) 1610, 1530, 1460, 1385, 1350, 1260, 1200 cm⁻¹; ¹⁹F NMR (CD₂Cl₂) δ * 98.8 (s, CF(NO₂)₂); mass spectrum, *m/z* (relative intensity) 518 (M + 41, 5), 506 (M + 29, 13), 478 (M + 1, 100), 433 (21), 140 (20), 61 (5). Anal. Calcd for C₁₆H₈FN₇O₁₀: C, 40.26; H, 1.69; F, 3.98; N, 20.54. Found: C, 39.98; H, 2.05; F, 4.24; N, 19.86.

Compound 22 had the following properties: IR (KBr) 1580, 1530, 1380, 1350, 1280, 1215 cm⁻¹; mass spectrum, *m/z* (relative intensity) 533 (M + 41, 3), 521 (M + 29, 4), 493 (M + 1, 100), 463 (5), 354 (9), 140 (16).

1 and *p*-NO₂C₆H₄OH at 1.0 GPa. A solution of 0.48 g (3.2 mmol) of 1, 0.14 g (1.0 mmol) of *p*-NO₂C₆H₄OH, 2.6 mL of CH₂Cl₂, and 0.4 mL of Et₂O (added to enhance the solubility of the phenol) was held at 1.0 GPa and 60 °C for 55 h. There was no gas pressure observed when the vessel was opened. Bulk to bulk transfer of volatiles at 0.007 kPa and 20 °C gave a yellow, solid residue of 0.31 g and a distillate which contained 0.30 g of recovered 1 by GC analysis with CCl₄ as the internal standard. IR analysis of the residue showed the absence of any phenol. The spectrum was

identical with that of pure *p*-NO₂C₆H₄OC(NH)CF(NO₂)₂, obtained by recrystallization of the residue from CCl₄ (represents 100% yield of imidate ester): mp 100.5–101.0 °C; IR (KBr) 3290 (NH), 1700 (C=N) cm⁻¹; mass spectrum, *m/z* (relative intensity) 289 (M + 1, 1), 150 (4), 140 (100), 123 (5), 94 (3). Anal. Calcd for C₉H₅FN₄O₇: C, 33.34; H, 1.75; F, 6.59; N, 19.44. Found: C, 33.49; H, 1.79; F, 6.57; N, 19.27.

1 and C₆F₅OH at 0.9 GPa. A solution of 0.46 g (3.1 mmol) of 1, 0.20 g (1.1 mmol) of C₆F₅OH, and 2.7 mL of CH₂Cl₂ was held at 0.9 GPa and 60 °C for 50 h. No gas pressure was noted when the vessel was opened. Bulk to bulk transfer of volatiles at 20 °C gave a light yellow liquid residue of 0.35 g and a distillate which contained 0.28 g of recovered 1 by GC analysis with CCl₄ as the standard. The residue was pure CF(NO₂)₂C(NH)OC₆F₅ by comparison of its IR spectrum with that of an authentic sample and represents a 94% yield of the imidate ester.

1 and CF₃CH₂OH at 70 °C. A sealed tube containing 0.20 g (2.0 mmol) of CF₃CH₂OH, 0.90 g (6.0 mmol) of 1, and 2 mL of CH₂Cl₂ was heated at 70 °C for 75 h. No evidence for 6 or any triazine products was detected by GC and TLC analyses.

1 and 6 at 1.0 GPa. A solution of 1.49 g (10.0 mmol) of 1, 0.63 g (2.5 mmol) of 6, and 2.5 mL of CH₂Cl₂ was held at 1.0 GPa and 65 °C for 23 h. The solution was concentrated in vacuo to 0.84 g of liquid with the following composition by GC analysis (uncorrected area, %): 6 (96.4%), 14 (0.5%), 13 (2.7%), and an unknown with a long retention time (0.4%). The ratio of 14 to 13 changed from 75:25 obtained in pressurization of 1 and CF₃CH₂OH in CH₂Cl₂ to 15:85 in this experiment.

1 and 12 at 1.0 GPa. A solution of 4.55 g (30.5 mmol) of 1, 1.95 g (10.0 mmol) of 12, and 24 mL of CH₂Cl₂ was held at 1.0 GPa and 60 °C for 23 h. A small amount of gas pressure was vented as the reaction vessel was opened. Bulk to bulk transfer at 20 °C gave 0.83 g of liquid residue and a distillate which contained 1.00 g of 12 and 3.50 g of 1. A trace of (CF₃)₃(CN)₃ was also found in the distillate by ¹⁹F NMR. The residue was analyzed by GC with (CF₃CH₂O)₃(CN)₃ added as an internal standard, on the assumption that its response would be similar to the triazine products in the product mixture. Its relative response to CF(NO₂)₂H and 6 was measured. A gas chromatographic/mass spectral analysis of the product mixture was used to assign structures to peaks in the chromatogram. The five major product peaks in order of elution were as follows (mmoles): CF(NO₂)₂H (0.23), 17 (0.12), 16 (0.23), 6 (0.41), 18 (0.37). Mass spectrum of 17, *m/z* (relative intensity) 356 (M + 41, 1), 344 (M + 29, 1.5), 316 (M + 1, 24), 296 (2), 113 (92), 101 (6), 85 (17), 71 (100), 69 (16). Mass spectrum of 16, *m/z* (relative intensity) 331 (M + 41, 0.1), 319 (M + 29, 0.2), 291 (M + 1, 3), 209 (34), 119 (34), 114 (99), 101 (100), 81 (41). Mass spectrum of 18, *m/z* (relative intensity) 410 (M + 41, 4), 398 (M + 29, 8), 370 (M + 1, 100), 350 (3), 324 (22), 273 (10), 240 (13), 144 (11), 101 (3), 69 (6).

(*m*-CF₃C₆H₄O)₃(CN)₃ (24). A solution of 1.72 g of (30.7 mmol) KOH in 5 mL of *m*-CF₃C₆H₄OH was treated with 1.88 g (10.2 mmol) of Cl₃(CN)₃. After a short period a vigorous reaction ensued, causing the solution to boil. Cooling the flask in a water bath caused the mixture to solidify. An additional 2 mL of phenol was added to liquefy the mass which was then held at 100 °C overnight. The cooled mixture was extracted with water (3 × 30 mL) and then 25 mL of CH₂Cl₂. The phenol was removed by distillation [bp 56 °C (0.7 kPa)] to leave a residue of 0.40 g (7%) of crude triazine. Recrystallization from CCl₄ gave material with the following: mp 158–160 °C; IR (KBr) 1570 (sh 1585, 1598), 1382, 1320, 1180 cm⁻¹; mass spectrum, *m/z* (relative intensity) 602 (M + 41, 7), 590 (M + 29, 28), 562 (M + 1, 100), 542 (89), 512 (12), 163 (36), 143 (56).

(CF₃CH₂O)₃(CN)₃. This compound was prepared in 61% yield by a literature method¹⁹ involving reaction of cyanuric chloride with CF₃CH₂OH and KOH. Material recrystallized from hexane had the following: mp 55–57 °C (lit. mp 45–46 °C); IR (KBr) 1592 cm⁻¹ (C=N); ¹H NMR (CCl₄) δ 4.76 (q, *J* = 8 Hz).

Reaction of 14 with KOCH₂CF₃. To a stirred solution of 0.11 g of 14 in 2.5 mL of CF₃CH₂OH was added a 0.18-g KOH pellet. An initially formed yellow precipitate disappeared in ca. 30 min

(18) Not all of the CF(NO₂)₂H is represented by this analysis since it is volatile enough (bp 125 °C) to codistill with the CH₂Cl₂ during bulk to bulk transfer.

(19) Matuszko, A. J.; Chang, M. S. *J. Org. Chem.* 1965, 30, 3724.

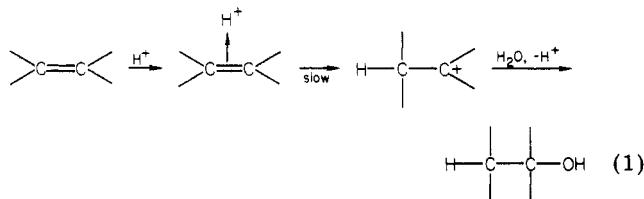
to give a colorless solution. GC analysis showed complete consumption of 14 and the appearance of a new compound with a shorter retention time. This was shown to be $(CF_3CH_2O)_3(CN)_3$ by spiking the solution with an authentic sample. A sample of the product was treated with CH_2Cl_2/H_2O ; the material in the CH_2Cl_2 was identical with the known triazine by IR.

Acknowledgment. This work was supported by the Office of Naval Research, Code 473.

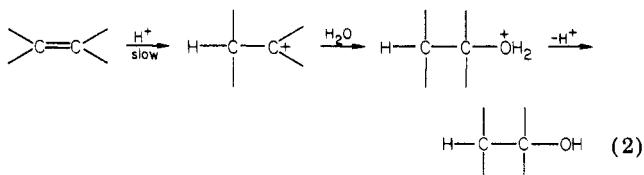
Registry No. 1, 15562-09-1; 3, 52801-29-3; 4, 75780-65-3; 5, 75767-45-2; 6, 75767-46-3; 7, 75767-47-4; 8, 75767-48-5; 9, 75767-49-6;

10, 75767-50-9; 11, 75767-51-0; 12, 4134-43-4; 13, 75767-52-1; 14, 75767-53-2; 15, 75767-54-3; 16, 75767-55-4; 17, 75767-56-5; 18, 75767-57-6; 19, 75767-58-7; 20, 1919-48-8; 21, 75767-59-8; 22, 75767-60-1; 23, 75767-61-2; 24, 54416-56-7; methanol, 67-56-1; 2,2,2-trifluoroethanol, 75-89-8; 1,1,1,3,3,3-hexafluoro-2-propanol, 920-66-1; phenol, 108-95-2; 3-nitrophenol, 554-84-7; 3-(trifluoromethyl)phenol, 98-17-9; pentafluorophenol, 771-61-9; 4-nitrophenol, 100-02-7; 2,2-dinitro-2-fluoroethanol, 17003-75-7; 2,4,6-tris(trifluoromethyl)-1,3,5-triazine, 368-66-1; 2,2-dinitro-2-fluoroacetamide, 15562-10-4; *p*-nitrophenyl fluorodinitroacetimidate, 75767-62-3; 2,4,6-trichloro-1,3,5-triazine, 108-77-0; 2,4,6-tris(2,2,2-trifluoroethoxy)-1,3,5-triazine, 1547-96-2; fluorodinitromethane, 7182-87-8.

Primary and Secondary Kinetic Isotope Effects in the Acid-Catalyzed Dehydration of 1,1'-Diadamantylmethylcarbinol in Aqueous Acetic Acid


John S. Lomas

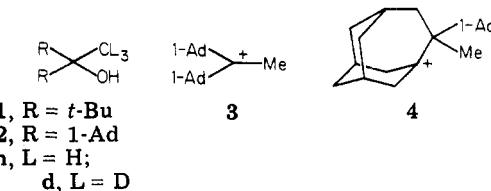
Institut de Topologie et de Dynamique des Systèmes de l'Université Paris VII, associé au CNRS, 1, rue Guy de la Brosse, 75005 Paris, France


Received August 5, 1980

The sulfuric acid catalyzed dehydration of 1,1'-diadamantylmethylcarbinol in anhydrous acetic acid proceeds exclusively to 1,1-bis(1-adamantyl)ethylene. The secondary deuterium isotope effect of 1.32 found for this reaction shows that carbonium ion formation from the protonated alcohol is rate determining. In the presence of water, however, capture of the carbonium ion competes with deprotonation, introducing a primary isotope effect. Consequently, the overall KIE rises, reaching 3.18 for 80% aqueous acetic acid. Analysis of the KIE for 80–100% aqueous acetic acid is consistent with a simple classical mechanism involving reversible formation of the intermediate carbonium ion. The primary isotope effect upon deprotonation is at the most 2.98, indicative of an asymmetric transition state close to the carbonium ion.

It is generally agreed that the acid-catalyzed hydration of olefins proceeds via protonation, reaction of the resulting carbonium ion with water, and final deprotonation of the oxonium ion to alcohol. Nevertheless, the finer details of this mechanism remained controversial for many years.¹ Various kinetic criteria, formerly believed to support rate-determining collapse of a π -complex intermediate to a carbonium ion (eq 1), did not rule out an A-S_{E2} mech-

anism where protonation of the olefin is rate determining (eq 2). The finding of general acid catalysis in the case



of simple olefins,^{1c} following unsuccessful attempts,² finally established this latter mechanism, already adopted for functionally substituted olefins. As a consequence of microscopic reversibility, the rate-determining step of alcohol

dehydration must then be carbonium ion deprotonation, as has been shown directly in the case of 1,2-diphenylethanol.³

As to the mechanism of alcohol dehydration in *nonaqueous media*, little is known. Rocek's assertion that in 85% to 100% aqueous acetic acid heterolysis of the protonated alcohol is rate determining, based as it is on the interpretation of an acidity function correlation,⁴ cannot be taken as conclusive. However, we have shown that the isotope effects on the kinetics and products of the dehydration of di-*tert*-butylmethylcarbinol, 1, in anhydrous acetic acid are consistent with rate-determining heterolysis.⁵ This reaction is unfortunately complicated by the fact that the intermediate di-*tert*-butylmethylcarbonium ion can rearrange to the triptylidimethylcarbonium ion and that, consequently, only small kinetic isotope effects would be observed even if deprotonation were rate determining. It was of interest therefore to seek a system where no such rearrangement was likely to occur.

1,1'-Diadamantylmethylcarbinol, 2, was chosen on the grounds that rearrangement of the corresponding carbonium ion, 3, would lead to formation of the homoadamantane system, 4. Homoadamantane is, according to

(1) (a) Banthorpe, D. V. "Elimination Reactions"; Elsevier: New York, 1963; pp 145–149; (b) *Chem. Rev.* 1970, 70, 295. (c) Kresge, A. J.; Chiang, Y.; Fitzgerald, P. H.; McDonald, R. S.; Schmid, G. H. *J. Am. Chem. Soc.* 1971, 93, 4907.

(2) Ciapetta, F. G.; Kilpatrick, M. *J. Am. Chem. Soc.* 1948, 70, 639. Jensen, J. L. *Tetrahedron Lett.* 1971, 7.

(3) Noyce, D. S.; Harrter, D. R.; Pollack, R. M. *J. Am. Chem. Soc.* 1968, 90, 3971.

(4) Rocek, J. *Collect. Czech. Chem. Commun.* 1960, 25, 375.

(5) Lomas, J. S.; Sagatys, D. S.; Dubois, J. E. *Tetrahedron* 1973, 29, 2157.